Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
نویسندگان
چکیده
منابع مشابه
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we deriv...
متن کاملQuasi-contractive Mappings in Fuzzy Metric Spaces
We consider the concept of fuzzy quasi-contractions initiated by '{C}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{H}$-contractive mappings on M-complete fuzzy metric spaces in the sense of George and Veeramani.The results are illustrated by a representative example.
متن کاملQuasi-Contractive Mappings in Modular Metric Spaces
In this paper, we prove the existence and uniqueness of fixed points of quasi-contractive mappings in modular metric spaces which develop the theory of metric spaces generated by modulars. Throughout the paper X is a nonempty set and λ > 0. The notion of a metric modular was introduced by Chistyakov 1 as follows. Definition 1.1. A function ω : 0,∞ ×X ×X → 0,∞ is said to be a metric modular on X...
متن کاملquasi-contractive mappings in fuzzy metric spaces
we consider the concept of fuzzy quasi-contractions initiated by '{c}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{h}$-contractive mappings on m-complete fuzzy metric spaces in the sense of george and veeramani.the results are illustrated by a representative example.
متن کاملA note on fuzzy contractive mappings in fuzzy metric spaces
Definition 1.1 (see [1]). A triple (X ,M,∗), where X is an arbitrary set, ∗ is a continuous t-norm, andM is a fuzzy set on X2× (0,∞), is said to be a fuzzy metric space (in the sense of George and Veeramani) if the following conditions are satisfied for all x, y ∈ X and s, t > 0: (GV-1) M(x, y, t) > 0; (GV-2) M(x, y, t)= 1 if and only if x = y; (GV-3) M(x, y, t)=M(y,x, t); (GV-4) M(x, y,·) is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/981578